Pour rendre les voitures autonomes plus réactives, le MIT les rend plus humaines

le 27 mai 2019 à 19h34
0
voiture autonome

Dans le but de rendre le raisonnement des véhicules autonomes plus proche de celui des humains, des chercheurs ont mis au point un système qui utilise uniquement des cartes et des informations visuelles pour leur permettre d'évoluer dans des environnements complexes.

L'un des avantages de l'humain sur la machine est sa capacité d'adaptation, lorsqu'il est confronté à une situation nouvelle dans un environnement qu'il ne connaît pas, simplement en glanant les informations qu'il trouve dans son champ visuel. Nous sommes ainsi capables de faire des correspondances entre les éléments qui sont à notre portée, et les indications qui se trouvent sur une carte ou l'écran de notre GPS, pour déterminer où nous nous trouvons et la direction à prendre. Les voitures autonomes actuelles vont en revanche batailler avec toutes ces informations, et se montrer incapables d'une telle efficacité dès qu'elles seront confrontées à un nouvel environnement, mettant beaucoup de temps à analyser les nouvelles routes. La plupart du temps, les cartes à analyser sont, qui plus est, générées à partir de scans 3D demandant énormément de ressources à l'ordinateur.

Vers des machines plus humaines


Dans un article présenté la semaine dernière lors de l'International Conference on Robotics and Automation, des chercheurs du MIT ont décrit un système capable d'apprendre la façon dont les humains se repèrent dans l'espace. La machine n'utilise alors que les données fournies par les caméras embarquées et une carte, comme celles que l'on trouve dans nos GPS. Le système, une fois entraîné à analyser ces données, serait capable de contrôler une voiture sans chauffeur, en imitant le comportement humain.

À la manière des humains, ce système serait en effet capable de détecter les incohérences qui pourraient se trouver entre la carte et la réalité, permettant à la voiture d'ajuster sa trajectoire. La machine utilise un modèle de réseau neuronal convolutif, couramment utilisé pour la reconnaissance d'images. Pour entraîner le système, un conducteur a d'abord contrôlé une Toyota Prius sans chauffeur, afin de réunir les données d'une zone sub urbaine, comprenant différents types de routes, ainsi que des obstacles. Dans un second temps, la voiture a été laissée au milieu d'une zone forestière dédiée aux essais de véhicules autonomes, et elle a réussi à s'y repérer en utilisant sa capacité d'adaptation.

« Avec notre système, il n'est pas nécessaire d'entraîner la voiture à circuler sur toutes les routes, explique Alexander Amini, diplômé du MIT. On peut charger une nouvelle carte dans l'ordinateur, et laisser la voiture se diriger au milieu de routes qu'elle n'avait jamais prises avant ».

Contrairement aux systèmes de navigation autonome actuellement utilisés, cette nouvelle méthode permettrait aux véhicules sans chauffeurs de se déplacer d'un point à un autre sans nécessairement connaître tous les détails du trajet.

Source : Science Daily

Cet article vous a intéressé ?
Abonnez-vous à la newsletter et recevez chaque jour, le meilleur de l’actu high-tech et du numérique.
Sélection Clubic VPN 2019

Les dernières actualités

Comparatif 2019 : Quel est le meilleur support mural pour votre téléviseur ?
Game Builder : l'outil de Google qui permet aux utilisateurs de créer leurs propres jeux
LEGO lance une collection Jurassic Park : Le Carnage du T.Rex
MSI et BlueStacks : les jeux Android portés en 240 FPS sur PC
Le nouveau Play Store et son Material Theme est en cours de déploiement
Tesla pourrait lancer un concurrent à Uber avant le déploiement de Robotaxi
Le Pixel 4 sortirait au mois d'octobre (selon une fuite de Verizon)
L'Université de Cambridge veut éviter les embouteillages à l'aide de Raspberry Pi
Amazon annonce une Echo Dot Kids Edition plus... colorée
Les créateurs d'Apex Legends dubitatifs concernant le cloud gaming et le jeu vidéo compétitif
scroll top