Pour rendre les voitures autonomes plus réactives, le MIT les rend plus humaines

27 mai 2019 à 19h34
0
voiture autonome

Dans le but de rendre le raisonnement des véhicules autonomes plus proche de celui des humains, des chercheurs ont mis au point un système qui utilise uniquement des cartes et des informations visuelles pour leur permettre d'évoluer dans des environnements complexes.

L'un des avantages de l'humain sur la machine est sa capacité d'adaptation, lorsqu'il est confronté à une situation nouvelle dans un environnement qu'il ne connaît pas, simplement en glanant les informations qu'il trouve dans son champ visuel. Nous sommes ainsi capables de faire des correspondances entre les éléments qui sont à notre portée, et les indications qui se trouvent sur une carte ou l'écran de notre GPS, pour déterminer où nous nous trouvons et la direction à prendre. Les voitures autonomes actuelles vont en revanche batailler avec toutes ces informations, et se montrer incapables d'une telle efficacité dès qu'elles seront confrontées à un nouvel environnement, mettant beaucoup de temps à analyser les nouvelles routes. La plupart du temps, les cartes à analyser sont, qui plus est, générées à partir de scans 3D demandant énormément de ressources à l'ordinateur.

Vers des machines plus humaines

Dans un article présenté la semaine dernière lors de l'International Conference on Robotics and Automation, des chercheurs du MIT ont décrit un système capable d'apprendre la façon dont les humains se repèrent dans l'espace. La machine n'utilise alors que les données fournies par les caméras embarquées et une carte, comme celles que l'on trouve dans nos GPS. Le système, une fois entraîné à analyser ces données, serait capable de contrôler une voiture sans chauffeur, en imitant le comportement humain.

À la manière des humains, ce système serait en effet capable de détecter les incohérences qui pourraient se trouver entre la carte et la réalité, permettant à la voiture d'ajuster sa trajectoire. La machine utilise un modèle de réseau neuronal convolutif, couramment utilisé pour la reconnaissance d'images. Pour entraîner le système, un conducteur a d'abord contrôlé une Toyota Prius sans chauffeur, afin de réunir les données d'une zone sub urbaine, comprenant différents types de routes, ainsi que des obstacles. Dans un second temps, la voiture a été laissée au milieu d'une zone forestière dédiée aux essais de véhicules autonomes, et elle a réussi à s'y repérer en utilisant sa capacité d'adaptation.

« Avec notre système, il n'est pas nécessaire d'entraîner la voiture à circuler sur toutes les routes, explique Alexander Amini, diplômé du MIT. On peut charger une nouvelle carte dans l'ordinateur, et laisser la voiture se diriger au milieu de routes qu'elle n'avait jamais prises avant ».

Contrairement aux systèmes de navigation autonome actuellement utilisés, cette nouvelle méthode permettrait aux véhicules sans chauffeurs de se déplacer d'un point à un autre sans nécessairement connaître tous les détails du trajet.

Source : Science Daily

1
0
Partager l'article :
Voir tous les messages sur le forum

Les actualités récentes les plus commentées

En réponse à des accusations de harcèlement des têtes tombent chez Ubisoft
Microsoft Flight Simulator sortira le 18 août sur PC
Nokia annonce pouvoir passer 3 millions d’émetteurs 4G à la 5G via une mise à jour logicielle
Apple anticiperait une forte hausse des achats de MacBook Pro
En Allemagne, Tesla condamnée pour
Free met à jour ses Freebox pour en améliorer le Wi-Fi (Révolution, Mini 4K, One, Delta et Pop)
Nissan Ariya : le crossover électrique se dévoile et promet jusqu'à 500 km d'autonomie
Taxe GAFA : 1,3 milliard de dollars de frais de douane pour la France... et 6 mois pour changer la donne
Windows 10 : pour certains utilisateurs, même avec l'outil de création de média, la MàJ est impossible
Apple recommande de ne pas fermer votre MacBook si vous en cachez la webcam… voilà pourquoi
scroll top