Netflix : algorithmes, tests et tags, la recette pour rendre les abonnés accros

le mardi 12 avril 2016

L'human tagging, ou la nécessité du contexte


Difficile d'évoquer les algorithmes sans parler des autres éléments qui s'en servent, et sont complémentaires. A commencer par le taggage des contenus. C'est l'affaire de Mike Hastings et Max Roman, qui travaillent à la contextualisation des catalogues de Netflix.

« Les algorithmes sont une chose importante, mais on ne peut pas suggérer du contenu aux abonnés s'il n'est pas contextualisé » explique Mike Hastings. Et pour ça, il faut une intervention humaine, à savoir celle des taggueurs. Il s'agit d'hommes et de femmes, dont une partie de la journée est consacrée à visionner du contenu de Netflix avant que ce dernier ne soit accessible à la totalité des utilisateurs, dans le but d'y apposer les mots-clés qui vont servir à la contextualisation.

Netflix dispose donc d'employés externalisés qui sont littéralement payés pour pratiquer le binge-watching. « C'est assez peu payé » souligne Max Roman face à l'incrédulité de l'auditoire. « Les gens qui font ça le font souvent en complément d'une autre activité, ce n'est pas un travail à plein temps. »

0320000008410712-photo-netflix-tags.jpg

Des tags très précis


En tout, ce sont une quarantaine de « taggueurs » qui travaillent pour Netflix. La plupart sont Américains, mais parlent des langues différentes. Il y a parmi eux un Français, mais qui travaille depuis les Etats-Unis. Le job consiste à contextualiser le plus précisément possible le contenu, avec des mots-clés qui peuvent former une longue phrase très précise. On se retrouve donc, par exemple, avec une rubrique « films mettant en scène un personnage féminin fort dont l'histoire est adaptée d'un roman » ou « une course contre la montre bourrée d'adrénaline avec de l'action et de l'aventure ».

Des qualificatifs qui prêtent à sourire, mais qui répondent à des demandes spécifiques. A côté de cela, on trouve des catégories plus traditionnelles : thrillers, actions, comédies... et d'autres, qui ciblent certains points importants du contenu, comme sa localisation : « Si l'algorithme constate qu'un abonné visionne beaucoup de films dont l'action se passe à Washington, alors il va lui proposer d'autres contenus qui se déroulent dans la même ville » explique Mike Hastings.

0320000008410862-photo-netflix-interface.jpg

L'objectif est toujours le même : plus l'offre est personnalisée en fonction des goûts des abonnés, et plus ces derniers trouveront un intérêt à rester sur le service, et donc à payer l'abonnement. Une logique implacable, appuyée par Hastings et Roman par une sélection de tweets où les internautes vantent les mérites des suggestions. Suggestions qui, cependant, varient d'un pays à l'autre, en fonction de la richesse du catalogue.
Modifié le 01/06/2018 à 15h36
scroll top